Posts in Category MFIA阻抗分析仪

Capturing transients with Zurich Instruments Toolkit: Programing your instruments was never that easy

on April 7, 2021 at 9:27 am by Meng
In many applications, Zurich Instruments lock-in amplifiers and impedance analyzers are integrated into a larger measurement system. Having an application programable interface (API) to obtain necessary information from the instruments is of great importance in such cases. Thanks to the […]

Proximity sensors: inductive or capacitive? Using the MFIA to measure the sensitivity and response time of both sensing regimes

on January 7, 2021 at 5:36 pm by Meng
Introduction A proximity sensor is a sensor that detects nearby objects without physical contact [1]. They are commonly used, in applications ranging from production lines to modern mobile devices, mainly thanks to their non-contact configuration and the accompanying long lifetime. […]

Function Generation Via Auxiliary Outputs on Your Instruments

on November 26, 2020 at 5:33 pm by Meng
Introduction Quite often one wants to generate an electrical waveform to assist his/her lock-in or impedance measurements. Such a function can be generated by a dedicated function generator, but ideally should be done in the same instrument, not only to […]

Measuring Dielectric Properties of Materials with Varying Thickness

on September 30, 2020 at 8:52 am by Meng
Introduction A dielectric is traditionally defined as an electrical insulator, with very poor conductivity at DC [1]. However, because of its polarizability, charges can be stored in a dielectric material, typically in the format of dipoles, in the low and […]

Multiplexed Impedance Measurements with the MFIA

on June 17, 2020 at 1:43 pm by Meng
Introduction Having more impedance measurement channels is often desirable in many applications. For instance, in electrical impedance tomography (EIT), it is common to have many channels to achieve enough spatial resolution (144 electrodes on the thorax) [1]. Naturally, this can […]


on May 11, 2020 at 9:25 am by Meng
阻抗测量可能有诸多不同的要求,但是最终共同的目标都一致,即获得最高的准度,精度和可重复性。本篇博文将指导您如何通过最佳的设置来提升您的阻抗测量结果。5个小技巧包括:1.确保仪器和待测器件之间的接线最佳; 2.使用用户补偿功能提升测量准度;3.选择正确的检测端子配置; 4.尽可能的使用自动输入量程模式; 5.优化平衡测量的速度和精度。

5-tips to Improve Your Impedance Measurement

on April 2, 2020 at 7:45 am by Meng
Introduction Impedance applications often have different requirements, but the common goals are similar; get the best possible accuracy, precision, and repeatability. This blog post will guide you to the best measurement settings to improve your impedance measurements. It will help […]


on September 24, 2019 at 11:05 am by Meng
很多器件和材料的阻抗都受到频率和其它参数(例如DC偏置电压)的影响。为了能够完整的表征这些样品,我们需要一种能在两个维度下进行参数扫描的阻抗分析仪。通过使用LabOne自带的任意5个API之一,我们可以轻易控制MFIA阻抗分析仪(或者MFLI锁相放大器和MF-IA升级选件)来进行这种全面参数分析。本文将详细说明如何使用简短的Python 3.7的程序,进行多参数维度的阻抗扫描。


on September 23, 2019 at 8:25 am by Meng
阻抗分析仪的精度是一个重要指标,它定义了器件或样品的实测阻抗和真值的区别大小。因为阻抗分析仪的精度会随着频率和阻抗大小而变化,因此我们使用一种能体现出仪器所能达到的最高精度的指标,即为基本精度,与此同时也能够对不同仪器做横向比较。MFIA阻抗分析仪的基本精度区间很宽,在1 Ohm到1 MOhm和 1 mHz到500 kHz范围内,MFIA可以达到0.05%的基本精度,这对表征不同器件和材料很有帮助。


on July 17, 2019 at 2:59 pm by Meng
直流支撑电容器(DC-link 电容器)本身和接口的ESL和ESR对绝缘栅双极晶体管(IGBT)开关模组的性能有着很大的影响。当IGBT模组关闭时,瞬时产生的电压浪涌会储存在寄生电感之中。为了降低或者消除此电压浪涌的影响,设计低ESL的直流支撑电容器至关重要。在本文中,我们将使用MFIA阻抗分析仪和专用的低ESL阻抗测试夹具来验证标称的器件参数。在1 kHz到5 MHz的测试频率范围内,最低的串联等效电感(ESL)仅为9.5 nH (742 kHz),而最低的串联等效电阻(ESR)仅为0.7 mOhm (11 kHz)。